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Average trajectory of returning walks
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We compute the average shape of trajectories of some one-dimensional stochastic propassbe (t,X)
plane during an excursion, i.e., between two successive returns to a reference value, finding that it obeys a
scaling form. For uncorrelated random walks the average shape is semicircular, independent from the single
increments distribution, as long as it is symmetric. Such universality extends to biased random walks and Levy
flights, with the exception of a particular class of biased Levy flights. Adding a linear damping term destroys
scaling and leads asymptotically to flat excursions. The introduction of short and long ranged noise correlations
induces nontrivial asymmetric shapes, which are studied numerically.
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I. INTRODUCTION Beyond its interest for what concerns the understanding of
) .. . Barkhausen noise, the nontrivial phenomenology of the ava-
Many disordered systems respond to external solicitationgynche shape leads to more general and interesting questions:
by producing noise with power-law features, that can beynat are the physical ingredients that determine the shape of
modeled in terms of avalanches. A notable example of sucfhe ayerage excursion in a generic stochastic process? Are
phenomena is the Barkhausen effect, first observed aboutifiere universality classes? Does this shape encode pieces of
century ago by recording the noise produced by the reversghformation about the underlying physical system, which are
of large domains in a ferromagnet. The Barkhausen noise hagy accessible by considering other observables? These is-
been incessantly investigated, both because of its practicg|,es have not been addressed so far. In this paper we begin a
application as a nondestructive method to test magnetic Maystematic investigation of the shape of the average excur-
tenalg, and because of its cqnceptual rglevance for'the undegron, by considering some simple stochastic processes, both
standing of the magnetization dynamics on a microscopigncorrelated and correlated, and with generically distributed
scale[1]. Experiments show that both the size and the durajncrements. In this way we provide a first theoretical frame-
tion of avalanches of spin reversal are power law Q|§tr|bute%ork that may be of help in the analysis of real time series in
over several decades. The exponents characterizing theﬁ?any contexts.
power laws are often used to identify universality classes |, sec. Il we introduce the concept of excursion, the types
[2,3]. Recently, the average pulse shape has been proposed@Syrocesses that we will consider in the following and the
a sharper tool for discriminating among universality classegeneral scaling form of the average excursion. Section il
and to test models against experimejs This analysis has  resents the results for processes with uncorrelated incre-
revealed some weaknesses of present models, since they g nts (Brownian motion, random walk, Levy flightsand
fail to reproduce the avalanche shapes observed experimegg_ |v discusses the effect of a damping term in a Brownian
tally. Namely, all models proposed so far produce symmetrignqtion. Sections V and VI consider, respectively, the effect
shapes, while leftward skewed forms are observed in experist |ong- and short-ranged noise correlations. Section VII pre-
ments, indicating that our understanding of the Barkhause8ents some conclusions and an outlook. A short account of

effect is, at the present stage, incomplete. This open issue hagme of the results presented here appeared in[Bef.
been the inspiration of this work.

We consider the problem of finding the average shape of a
generic stochastic signal during an excursion, i.e., between
two successive returns to a reference value. We hope that a Let us first define the average excursion of a stochastic
deeper understanding of how the statistical properties of thprocess. We consider a real valuadigrocess(t) defined by
signal are reflected on the shape of the average excursion can_angevin equation with suitable initial conditions. An ex-
in general give insight into the understanding of the processursion of the process is the trajectory in ttiex) plane,
generating the signal. In the case of Barkhausen noise, th{gllowed until the first return to the initial valug(0) [see
may help identifying which crucial ingredient is missing in Fig. 1). We are interested in the statistics of positive excur-
the theory, and lead to the introduction of more accurat&jons of a given duratiof, i.e., those such that(t) > x(0)
models. =0 for 0O<t<T. In particular we will denote the average

excursion agx(t))r.
When analyzing real experimental data, one may need to

Il. DEFINITION OF THE AVERAGE EXCURSION

*Electronic address: fran@pil.phys.uniromad.it extend our definition to a generic reference value different
"Electronic address: andrea.baldassarri@romad.infn.it from zero. For example, this is the case for positive signals,
*Electronic address: castella@pil.phys.uniromadl.it for which the identification of excursioavalancheg is
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[

f dx XX, tX0,0;%o, T)
0

X())r= (3

f dXQ(X,t|Xo,0;Xo,T)
0

Note thatQ(x,t|xy,0;%, T) is related to the distribution of
first return times of the process P(T)
= [¢ dxQ(X,t[X,0;%0, T).

In the case of Markovian processes, as &, ) can be
written in terms of the functiore(x,t|xg,tp), Which is the
probability that the process startedxgtat timet, is in x at

0 YT 1 time t, with the condition thax>0 for all ty<t’ <t. The
probability Q(x,t|x,0;X%y, T) of the whole trajectory is the

FIG. 1. Schematic representation of the average shape of a flugproduct of the probabilityc(x,t|xy,0) of going from x, to
tuation. Thin solid lines are two realizations of the stochastic prox(t) times the probabilityc(x,, T|X,t) to go fromx(t) back to
cessx(t), both returning for the first time at zero at tinfe The  x, at timeT. Notice that instead of starting exactly from 0 we
thick solid line is the average shape computed over mamhave to consider the path starting and arrivinggn- 0 since
realizations. ¢ vanishes identically fox,=0. Hence, for any Markovian

process, we can write
made unclear by the presence of background noise: one has "
to choose a recipe to decide when an aval'anche starts or dx oX, X0, 0) X C(Xg, TIX,1)
ends. In practice, one sets a threshold which is small enough _ 0
not to change the shape of the avalanche, but high enough x(®)r= I|m+ %
with respect to background noise. *0—0 f

A generic reference valua is taken into account by a
translation Of the origin of _andx: the excurS|or,1 Ok(t)/ with Equation(4), together with translational invariance and the
respe_ct toa is the excursion of a process(t’)=x(t’+t,) scaling assumption
—a with respect tax’(0)=0, wherex(t,) =a.

Notice that in general the probability distribution c(X,t%o, 0) = tPh[ (X — Xo)/t] %)
of first return timesP(T) depends on the threshold valae
For this reason we expect that variationsaofill affect the
average exc.ursmmx(t))T. In fact, for. most of the simple (X(1))7 = T UT). (6)
processes discussed below the choice dfas no effect on
the shape of the average fluctuation. In some of the cases that we will consider E4). cannot be

We will analyze two kinds of processes. The first are pro-applied, since noise correlations break the Markovian prop-
cesses of the type erty. Nevertheless, we will always find E¢) to be true

provided that the distributio(T) of first return times de-
cays algebraically. In all the cases considered the expanent
aX(t) = &(t) (1)  coincides with the wandering exponent of the unconstrained
process, defined b{{x(t)—x(0)]%) =t

x/T*

(4)

dx oX,t[Xg, 0)c(Xg, T|X,1)
0

for the conditional probabilityc(x,t|xy,0) implies

with random incrementsg(t) extracted from a distribution
Q(&). In Sec. lll the noise will be taken to be uncorrelated
while in Secs. V and VI we will deal with the effect of A. Brownian motion
correlations. The case considered in Sec. IV is the simplest
instance of a wide class of processes, Brownian motions in a

potential axX(t) = (1), (7

IlIl. UNCORRELATED PROCESSES

The simplest process is the uncorrelated Brownian motion

where &(t) is a Gaussian white noise witté(t))=0 and
Ix(t) = = dV(x)/dx+ &(1). (2 (&t ))=a8t-t).
The probabilityc(x,t|xy,0) can be computed via the im-
age method6] as a linear combination of two solutions of

For analytical calculations it is useful to express the averagghe Fokker-Planck equation associated to the free process
excursion more explicitly. Let us first introduce the excur-

sion distributionQ(x,t|X,,0;Xy, T), Which is the probability
that a trajectory, started ix, for t=0 and returning to, for
the first time at timeT, is in x at timet. For each time, Q) is
the distribution of the quantity whose averagexé&))r, i.e.,  yielding, in the limit of smallx,

2
o, 0) = Zle™” X020 — et x0%@0] - (g)
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2 5 B. Random walk
C, X0, 0) = == x0T, 9 . - . .
\2mt3/2 The Brownian motion is a continuous process in space
) ) ) ) ) and time. On the basis of the central limit theorem it is rea-
The time-reversal and time-translational invariances of thegnaple to expect the form of the average excursion to be the
process imphyc(xo, T|X,1)=c(X, T~t[xy,0), hence the distri-  same for all processes with finite variance of the single in-
bution () is crements. To support this conjecture we now comgxtie)+
. - _ for a process with finite variance, discrete in space and time,
0%, t0,0%0.T) = 6lx, txo, X, T~ tx0, 0) a random walk with bimodal distribution of the noise, i.e.,
o [(T—t)t]—3/2()()(0)Ze—X2{1/<2U+1/[2<T—0]}_ Q(&)=(8¢1+8;-1)/2. The number of paths starting in 0 at
time 0 and ending irx at timet without ever touching the
(10 _ o
x=0 axis is given by[6]
Expression9), inserted into Eq(4), gives for the average

. X t!
excursion F(x,t) = T e (16)

o Bl
X(t)7= T”Z\/; ?<1 - ?>. (12) 2 2

] ] o Hence the probability to find the walker kat timet with
The average excursion of Brownian motion is thus of theghe condition that it has never touched the axis is obtained
scaling form(6), with the exponentr=1/2 coinciding with  fom Eq. (16) dividing F(x,t) by M(t)=3, F(x,t), the total
the wandering exponent of the free process and a scaling mper of possible trajectories ofsteps in the positivex

function proportional to a semicircle half plane
8 i1 o F(x,t)
f sz\/jrsl—s, 12 -
u (9 ) (1-9) (12) c(x,t) (17)

M)

wheres=t/T. This result had already been noticed by Fisherygjng time-reversal symmetry, the average excursion is then
[7]. The variance of the excursion is also readily computedgi\,en by

8
<[X_<X(t)>T]2>T:T<3 ——) s(1-9). (13 2 X oxex,T-1) t
7 (x()r= =K, x c(x,)e(x, T—t)
The previous results are easily generalized to the case of a Ex cxHexT=1) x=0
Brownian motion with bias, that is, E¢7) with v=(& >0. (18)

The process is now invariant under time reversal only pro-
vided the velocity is also reversed. Therefore, in this casavith K=M(t)M(T-t)/F(1,T-1), where we used the fact
c(Xo, T|X,t;v)=c(X, T-t|Xy,0;—v). Such quantites can thatZ, F(x,t)F(x,T-t) is independent fronmt and equal to

again be computed via the image methj8il F(1,T-1). Introducing the variableg/=x/\t, s=t/T, and
1 ¢:ﬂ1—s), and using the expansrionn!/(n/’_Z)!

c(X,tX0,0;0) = ’=e—(x— X0~ vt)2/(2t>(1 — ey (14) = \52/77_2“/n, we get M(t)_c(y\s’t,t):F(yv‘t,t)

v2mt =2ty "2, F(1,T-1)=27/\24T%2% and K

Inserting this expression into the formula for the excursion™ V2/m(T"1?/s(1-s)) so that the average excursion is
distribution it turns out thaf) is the same of the unbiased & 2K gt
case except for an additional facte®’ 2. Such a constant (X(1))7 = Ktep f dyyPe (P2 — 2
appears both in the numerator and the denominator of4xq. 0 (1+¢9)
implying that the average excursion is exactly the same 0\f/vhere in the last step the integral has been extended to in-
finity. Expressinge¢ in terms ofs=t/T we recover

(19

the unbiased Brownian motioii1).
Notice that the addition of a bias introduces a character-

istic time of order 142, which reflects in a cutoff in the 8

distribution of first return time$9] (x(t))r = T2 \/:\’5(1 ) (20)
a

-3/2,-02T/2
P(T) =T ' (15) exactly as in the continuous case.

However, a bias does not alter the shape of the excursion: the In the case of a biased walk, whef@(¢)=[qd;,+(1

number of trajectories that survive up to a tifie-2/v2is  —0)d; 1], one must replace the number of trajectof¢s, t)

exponentially small, but the average shape of these unlikelwith their probability: each trajectory reachimgat timet is

events is exactly the same as for the unbiased case. weighted by a factog™/?(1-q)®™'2, The trajectory lead-

This is the first example of the insensitivity 6f(t))r with  ing back to zero has instead a weight/2(1-q)T-t#¥/2,
respect to changes in the distribution of single steps, a feaFhe product of these weights gives simply a constant factor
ture that will turn out to be quite generic. [9(1-0)]™ both in the numerator and in the denominator of
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T FIG. 3. Scaling functiorf for for Levy flights with several val-
ues of u.

FIG. 2. The factoN(T) vs T for Levy flights with several values

of u. Notice that the exponent is 1/2 fpr=2. exactly the same as of the Brownian motion: The shape of

_ ) _ the average excursion is completely independent from the
formula (18). Hence the introduction of a bias does not gjstribution of single steps.

change all moments of the distributiéh of the excursion. In Appendix B we report the results also for the variance
of Levy flights. We have not been able to prove this result

C. Unbiased Levy flights analytically for Levy flights. However, in the cage=1, we
have considered the Levy-stable distribution, the Cauchy dis-

Levy flights are statistical processes of the typg where
the distribution of single stepg®(¢) has a fat tail decaying as
|§7#1 with 0< <2 so that their variance is infinite. The
standard form of the central limit theorem does not hold for Q(é) = 1D (21)
Levy flights: the invariant distributions under summation are
the Levy stable distributiongl0]. It is therefore natural to We have computed numerically the probability density
wonder whether Levy flights belong to a different universal-c(x,t) for such a process. The result is presented in Fig. 4,

tribution

ity class also with respect to the average excursion. where it is compared with the ansatz
The analytical evaluation ofx(t)); for this case is not [
. . . a Xt
straightforward as for the processes discussed so far. While c(x,t) = T (22
+

Eq. (4) still holds, the image method cannot be used to de-
terminec(x, t| Xy, 0), because the Fokker-Planck equation for\yhere a is a normalization constant. Formul@2) is the

the free process is not locgll]. We have therefore com- simplest expression that interpolates between the ssaaiti
puted the average excursion numerically, considering steps

performed at discrete integer times with absolute value dis- 10°E
tributed according t&(|£) = (|&+1)™*"* and random sign. £
Details about the evaluation ¢k(t)) in this and in the .
other cases where numerical results have been obtained a 10" F
presented in Appendix A. F
To check the validity of the scaling hypothesis we com- _ 102E
pute the quantityN(T), such thatx(t))r=N(T)f(t/T), where ‘;j E
we choose, with no loss of generality to normalize the scal- %
ing functionf so thatftl) f(s)ds=1. If scaling holdsN(T) has = 10'3;
to be proportional tar* and the normalized average shapes : _ {2%880
(X(t))7/N(T) must collapse on the same curve for differént 104:_ . fe)=as"1 + 57
In Fig. 2 we plotN(T) for several values of:, showing that 3=5/(4m) sqri(10)/5qrt(S-sqrt(5))
a=max[1/2,1/u]. Also in this casex coincides with the A
wandering exponent of the free process, which ig Tor 10'150_3 — 1(')2 — 1(')1 — 1(')0 — 161 —
u<2 and is the usual diffusive one whern=2 [12]. s=x/t
Figure 3 reports the shape of the average excursion for
values ofu such that the second or even the first moment of FIG. 4. Comparison betweec(x,t) evaluated numerically for
the single step distribution is infinite. In all cases the curvesor Levy flights with steps distributed according to Eg1) and the
for different values ofT collapse and the scaling form is ansatz(22).
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large s power-law behaviors found numerically. The agree- p=1.5, bias=20
ment between the numerical results and the formula is strik- 2 3000 — ' I ' I ' P
ing. A different ansatz has been checked to be false for suct [— Das R s g
a case, in Ref(18]. 20001 near it || 2 T=6000
Inserting the expressiof22) into Eq.(4) and performing § 1.5 _% s <+ T=11000
the integrals, one obtains G 1000~ .
[
g L |
A N s ' | L |
X(W))r=Tys(1-9) (23) g % 5000 10000 5
% 1~ T 10 — Data T
adding another piece of evidence to the universalit§(sf. 2 10 — P
= g .3 1
é < \ﬂ-’_‘ 10
D. Biased Levy flights S 05 17 10° -
We now consider the case of biased Levy flights, where L IR 1oi03 i:)4 _
single increments are distributed symmetrically as in the un- Yo"
i i 1 | L | L 1 1 | L
biased case plus a constant tegmin this case the average i 03 oa Y 08 ]

form of the excursion is in general asymmetric for finite
times (toward left or right depending on the sign of. To . . . o .
understand this behavior, it is fundamental to consider the FIG. 5. Bias-dominated regime for Levy-distributed increments
relative importance in the equation of motion of the drift (+=1.5 with biasv=20. Main: Normalized scaling functiohcon-
term and of the wandering due to the stochastic varigble ~Verging toward the asymptotic forfis) =2s. Upper inset: The fac-

The former is clearlyT, while the latter grows aglim tor N(T) growing asT® with a=1. Lower inset: First return distri-

s ; : - - -1

Hence a crossover time (v) ~ v~/ exists between two Pution P(T) decaying as™#=.
regimes: which of the two mechanisms dominates depends
on the value ofu. For 1< x< 2 the bias dominates for large ~ Therefore, we can conclude that, while in the unbiased
times, while the wandering is larger thai for T<T". For ~ case the average excursion of a generic uncorrelated stochas-
w<1 the opposite is true and asymptotically the bias doe$iC process with symmetric steps obeys asymptotically the
not play any role. scaling form(6) with universal shapé(s) [Eq. (12)], in the

When the bias is irrelevant, the behavior is the same as diiased case, this is true only for<1 or u=2. For
the unbiased caséx(t))r is given by Eq.(12), a=1/u and 1<u<2 instead, the presence of a bias leads to an
the first passage time distributioR(T) decays asT-1"Y«  asymptotic average excursion with triangular shape. The re-
[13). sults for biased flights are summarized in Fig.14].

When the bias dominates, instead, the shape of the excur-
sion is completely different. In this case the trajectories are
practically deterministic, i.e., ballistic motions with velocity
v. However, the noise term is crucial to have the constraint \we now deal with a Brownian motion in a potential, Eq.

X(T)=0 satisfied, since at=T a very large fluctuation is (2). we treat only the simplest possible case, an harmonic
needed. As a consequence, the distribution of return times is

t/T

IV. DAMPED BROWNIAN MOTION

P(T)~T 1, the exponentr is 1 and the average excursion 1=1.5, bias=1.0

has a triangular shagde(s)=2s. This bias-dominated regime 2 : | . | : : . : .

is shown foru=1.5 andT>T" in Fig. 5. The crossover o T=100

between the two asymptotic regimes is very slow and it is I [o— T=300

not possible to run a single simulation long enough to exhibit ¢ o %fggg

the full transition between the early and late regimes. Nev-E =1 a—a T=900

ertheless it is possible to distinguish clearly between the be-é |

havior for u>1 andu<1. In the former casgFig. 6) the g

form of the average excursion becomes more and morez |- 0.5

skewed with time, while in the latter cag€ig. 7) the oppo- 3 .l |

site behavior is observed. % - §

To give a measure of the asymmetry, we consider the& ;0-4‘ 7

quantity = 0.5 gt ]

1 I 035300 600 900
f dsf(s)sgn(s - 1/2, (24) | | | TI

0 % 0.2 0.4 0.6 0.8

which is zero for the semicircle and 1/2 for the triangle. The
insets of Figs. 6 and 7 clearly indicate that, fer1.5, it
grows, while it decreases to zero fu=0.5, consistently
with the argument presented above.
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FIG. 6. Main: Scaling functiorf for biased Levy flights with
©=1.5 andv=1. Inset: Temporal evolution of the asymmetry pa-
rameter[Eq. (24)].
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p=0.5, bias=25

W 1<<T<<T T <<T

-

<1

1<u<2 /_\

FIG. 8. Sketch of the average shape for positively biased flights.
The crossover tim&", depending on the value of the bias, changes
the asymptotic behavior only for<du<2. For u<1 the average

FIG. 7. Main: Scaling functiorf for biased Levy flights with  trajectory is asymmetric in the intermediate regifeT", and it
©=0.5 andv=25. Inset: Temporal evolution of the asymmetry pa- takes a triangular shape in the linfit— < after T — e,
rameter[Eq. (24)].

Normalized average shape

8
potential V(x) =\x?, so that the Brownian motion is pushed =732, T<1N
toward the origin by a linear damping term P(T) 78T (32)
d 3/24-AT s
axX(t) = = A+ (1), (25) —(@)Te ™, T>1N,
The formal solution of this equation is given by For T<1/\, theT~32 behavior characteristic of Brownian

motion is recovered. When is of order 1A, the power-law
behavior is cut off exponentially.
N A (t-9) .
X(t) = Xoe +JO dse™™'n(s). (26) To calculate the average excursion we need to evaluate
the probabilityc(x,t|x,,0) that a walk originating ak, at
Sincex(t) is linearly related tor(t), it has a Gaussian distri- time 0 is found inx at timet, without having ever touched
bution characterized by its first and second moment, that caH'e origin. Since Eq(25) is linear, the image method can be

t

be obtained by averaging over the noise: applied, yielding
- 1 X — Xg€ )2
m(t) = (x(t)) = xe™, c(x,t|x0,0):——{exp{— %}
(27 V2o (t) 20'7(t)
1- e—2)\t —\t\ 2
od()= ([0 ~ x()) = = —. ~exp {- %} . (32
203 (1)
The normalized probability density for the free process isin the limit x,—0
therefore 2xoxe ™M
%[22
1 (X = xoe™N)? O(x,t[xp,0) o ==~ b12A] (33
P(x,t) = —=———exp + . (28) vemay(t)
V270, (1) 205(1) The quantityc(xy, T|x,t) for x,— 0 is obtained in a simi-
One can easily check th#(x,t) solves the Fokker-Planck lar way
: A (T-1)
equation clxo Tl ) = ?ﬁXi o2 2Ty ZT-t)] (34)
AP, = L2P(x,1) = N XP(x, D] (29) \2ma\(T=1)
) ) ) ) Defining "d’}(t)zo{(t)ez“ one can rewrite Eq34) as
associated with the Langevin equati(2b).
o ) ) i . N(T-t)
The distribution of first return times is o, TIX 1) %ﬁf e_[lez 5§(T_t)]. (35
s L T \2mag(T—1)
PMoe————=—@N)*——=5;. (30 ~206) = - -
8mod(T) 8m (1-g2T)32 Note thato(t)=o2(t)e=a?,(t), thus the process with re-
versed time formally corresponds to the process with
Thus N——\.
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T

FIG. 9. Average excursion for a damped random wWa&l§. (38)]
for 1/A=20. From top to bottom lines are forT
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t(T-1t)

t,T-t<<1/\

A (40)
— t,T—t>1/\,
2\
Thus fluctuations saturate at the valug2V), indicating the
absence of correlations on time scales longer than the char-
acteristic time 1X.

In the computation presented here we have taken the ref-
erence value to coincide with the origin, i.@x0. In the
presence of a potential, the effect of a reference value differ-
ent from zero corresponds to the chaif) — V(x+a). For
the damped Brownian motion, this is equivalent to the intro-
duction of a bias\a. In general, such a bias perturbs the form
of the average excursion, at odds with the case of free ran-
dom walks, which are unchanged by the presence of a bias.
However, the change in the average shape is small provided
a is small compared with 4/m\, the maximal amplitude of

(X(0)7.

=10,25,50,100,250. Notice that the shape flattens to the constant

value \4/(a\) (thin line).

The distribution of excursion8 is then

0%t} 0% T) = €0 (D, (T = O] S 2707,

(36)
where the variance of the Gaussian factor is
05q=[037() + o X(T-0] "
_ a2\t — a2\ (Tt
= %[ ne 1)_(2-; ( ))] (37)

Inserting Eqs(33) and(34) into Eq. (4) yields

8
X(V)r= \/;G'eq(th)

8 1 1_e—2)\t 1_e—2)\(T—t)
:\ﬁ?\/( -2 g
T\ 2\ 1-e

V. LONG-RANGED CORRELATIONS

We now start considering the effect of the introduction of
temporal correlations in the process. In particular, we study
processes of the formx(t) =&(t), with correlations between
single incrementg(t,t') = (1) £(t")) —(EW)EM")) # Sy

We first focus on a processx(t)=¢&(t) where the noise
performs in its turn a Brownian motio@&(t)=»(t) with
(m)=0 and(7%)=1. Clearly this process is non-Markovian
and can be written as the random accelerated partid),

FX() = 7(t). (41)

The correlation function of(t), g(t,t’)=min(t,t’) does not
decay to zero whet—t’ diverges: the noise has then infi-
nitely ranged correlations. This process has been studied
recently with regards to polymelfd5] and the inelastic
collapse of granular mattéd.6].

It is important to stress here that, at odds with the previ-
ous cases, the non-Markovian nature of the process implies
that to define completely a fluctuation one has also to con-
sider the initial and final velocitieghe process is Markovian

As expected the existence of a characteristic time in thdf One considers the broader space of coordinate and veloc-
problem(1/)\) breaks down scaling: the shape of the averagéty)- We consider separately avalanches beginning with zero

excursion changes with (Fig. 9). However formulg6) still
holds in the two asymptotic limits

8 /o=y tT-t<1M
au
X(t)r= 39
X(t)r g 1 (39
—— t,T-t>1M.
T2\

or a finite velocity, that will yield different results. For what
concerns the final velocity the most natural thing is to aver-
age over all final velocities. The condition on the initial ve-
locity is numerically very easy to implement, since it corre-
sponds to settingy(0)=v,. Instead, the condition on the final
velocity is more delicate. Considering returns within a strip
(—€, +¢€) implies, when using discrete times, a hidden condi-
tion on the final velocities. This is apparent if one considers
the long time decay of the distribution of first return times. If

Thus in the smalk limit the semicircle is recovered, while in one considers discrete times and a return in a strip, the
the large\ limit the curve flattens around a value propor- known result P(T)~T54 [17] is not recovered. The ex-
tional to 1A\, while keeping the semicircular tails. The pected exponent is found instead if one averages over all
crossover between the two regimes corresponds to #@ajectories positive up to<T and becoming negative for

change in the varianceﬁq of Q)

t=T. Therefore, we considered only this latter kind of trajec-
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2 T T T T T T T T [ T T T T T T T T
— Eq.42
— T=1000 Exp
|- T=51000 Exp o L5F

—— T=101000 Exp g
© 1.5H- T=1000 Unif _ 7
&[] T=51000 Unif g
= == T=101000 Unif s
[} L 1F
[ >
on ]
< =]
8 5
2 N
s 1 =
E g 051 =10 T=10150
S Z Vo= =
é — Beta
=) — Parabolic
Z 05

O L | L 1 L | L | L
0 0.2 04 0.6 0.8 1
t/T
0 . . . . . FIG. 11. Main: Scaling functiorf for a RAP with finite initial
0 0.2 0.4 0.6 0.8 1 velocity, with uniform distribution of the noise.

t/T

FIG. 10. Main: Average excursion for a RAP with zero initial Universality remains also for the RAP process. The right
velocity, with uniform or exponential distribution of the noise ~ panel of Fig. 13 shows that the exponent characterizing the
showing perfect agreement with the simple foi#). Inset: Factor ~ behavior off(s) for s—1 is universal, being linear also for
N(T) and first-return time distributiorP(T) for uniform noise ~ w=1. For small values of instead, a careful analysis indi-
distribution. cates that the actual exponent of the power-law behavior is

slightly different from the value 3/2 obtained for finite vari-
tories. We believe that, asymptotically, this coincides withance(Fig. 13, left panel We do not have an explanation for
the continuous time process averaging over all final velocithe value of this exponent. However, we cannot rule out that
ties. such universality is restored for larger valuesTolWe have

Figure 10 reports the average excursion Shape for twghecked that, in the case Of f|n|te |n|t|al VeIOCiIM the tran-
different distributions ofy with finite variance, one uniform sient parabolic shapes are present also for valugs<o2.
and the other exponential, both in the case of zero initial
velocity. It is clear that scaling holds very well for all values VI. SHORT-RANGED CORRELATIONS
of T considered and for both distributions of the noise, and
that the scaling function is asymmetric. As shown in the We now turn to the case of short-ranged correlations. We
inset, the exponend is again equal to the free wandering consider a process with correlations decaying exponentially
exponent, which is 3/2. Remarkably, the scaling function isover an intervatr,
indistinguishable from the simple form

2 , I , T . T . T .
- Eq.42 .

shape is very close to a simple parabo&16-s). We have
also checked that the exponentrosses over from a ballis-
tic value @=1 at short times to the asymptotic value 3/2.
Comparing the values af in the two regimes we expect the
crossover time to be proportional tx@

We then consider RAP with noise distributed with
slowly decaying tailsP(|7|) ~ 1. With zero initial veloc- - , , , ,
ity the scaling function depends on the valuewfFig. 12), 0 02 04 T 06 038 1
at odds with what occurs for uncorrelated unbiased pro-
cesses. The skewness is toward I’Ight, the more so for small FIG. 12. Main: Sca"ng functiorf for a RAP with noiseﬂ dis-
valuesu. The exponentr is equal tol+1/u. tributed with slow decaying tail®(|7|) and several values qf,

Despite the dependence of the detailed scaling form ofompared with the simple forr2). Inset: FactoN(T) and first-
(X(t))r on the distribution of single steps, some degree ofreturn time distributiorP(T) for the same values gi.

f(s) =391 -9). (42) — T=1000 p=0.7 X
M| -~ T=51000 p=0.7 %
In Appendix B we report also the results for the variance == T=100000 u=0.7 i
of the excursion, showing that it scales as the first moment. g .50~ ;f;?ggo*‘:fs -
0 . A ) g - T= p=1.5
When the initial velocity vy is finite, instead, the g —— T=100000 p=.5
asymptotic scaling associated with an average sk#épeis go = zg;uf(ljg :
preceded by a transient regime with a more symmetric&; ~Tmﬁf'
i i s 1 - P(T) p=0.7 -
(X(t))7, depending onl and v, (Fig. 11). For largev, the g Iy =i
-

e
in
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log,((t/T) log,(1-/T) FIG. 14. Normalized average shape for a short-memory process

with zero initial velocity, finite variance noise and=1000. The
FIG. 13. Left top: Smalt/T tail of the scaling functiorf for  gashed lines are the expected limiting curvesTet r and T> r.
RAP with Cauchy distribution of single steps. Left bottom: Local
effective exponent computed on the figure above. Right top: Smalonly for distributions that renormalize to the Gaussian, but
1-t/T tail of the scaling functiorf for RAP with Cauchy distribu-  also for the class of distributions that renormalize to symmet-

tion of single steps. Right bottom: Local effective exponent com-ric Levy stable distributions. More generally the scaling

puted on the figure above. function is unchanged when a bias is introduced, with the
notable exception of the case with<lu<2, where the
gitt) =exp(=|t—t'|/7) (43) asymptotic shape of fluctuations is triangular. The addition of

a linear damping term in the Langevin equation for the pro-

A process of this type can be obtained in practice by feedingess introduces a characteristic time scale, that separates be-
the random walk with noise obeying a damped random walkween two regimes: for short times the process is dominated
of the form &(t+1)=y&(t)+(V1-9%) 5(t) with uncorrelated by noise, and the excursion is the same as in the free case.
1. The correlator of(t) is easily shown to decay expo- For longer times, scaling breaks down and the shape of the
nentially, with a characteristic time=-1/In 1. average fluctuation flattens to a value independent from its

For such a process, we do not expect scaiB)gto hold  duration. Furthermore, we have analyzed the effect of noise
for all values of T. We can anticipate instead two regimes correlations for the free process. When correlations are long
depending on the duratiof of the trajectories considered. ranged the shape of a fluctuation depends on the initial ve-
For short timesT< 7, noise is correlated during the whole locity v,. For v,=0 we find that the scaling function has
trajectory and the behavior must be the same of the case witsymmetric tailss*? and (1-s) in the Gaussian case, while
infinitely ranged correlations treated above. For long timeghe situation for Levy distributed steps is less clear. For
T> 7, on the contrary, noise is correlated only for intervalsvo>0 a transient regime exists such that the scaling function
that are short compared to the total duration of the excursiorhas linear tails(independent from the distribution of the
Hence the process is equivalent to an uncorrelated procesingle stepg before it crosses over to the asymptotic form
with some effective distribution of the single increments.  which is the same of the,=0 case. Finally, in the case of

Numerical results fully confirm this picture. In Fig. 14 we short-range correlated noise, the range of correlation sets a
show the case of a short-memory process with zero initialime scale that separates between a short time regime, where,
velocity and finite variance noise. For short tinies 7 the  as expected the behavior is similar to the long-range case,
shape is very close to the for(2), valid for RAP. A slow followed by a crossover to the asymptotic uncorrelated be-
crossover leads for longer times to the semicircle law valichavior.
for uncorrelated processes. We have checked that the ex- Application of this analysis to real data requires some
pected pattern of behavior occurs also for nonzero initiacare. Indeed in many situations of practical interest one deals

velocity and for Levy-distributed noise. with long time series consisting of a large number of succes-
sive fluctuations. In such a case, if one compyi€s)); by
VIl. CONCLUSIONS averaging over successive returns to the vataa one may

average over pulses that are not statistically independent.

Let us summarize the results presented in the previous In our work, on the contrary, we take care to average
sections. We have studied the statistics of excursions in sonsways on independent events. When the process we con-
classes of stochastic processes, with particular attention tsider is Markovian this does not require particular prescrip-
the average shape. For uncorrelated free processes we haigns. In this case averaging over successive fluctuations in a
found that the average excursion has a scaling function prasingle realization is equivalent to averaging over avalanches
portional to a semicircle, independent from the distributionbelonging to different realizations. Otherwise one should
of the single steps provided it is symmetric. This holds notconsider avalanches separated by times larger than the larg-
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FIG. 15. Plot of the average shape and standard deviation for FIG. 16. Plot of the average shape and standard deviation for
Levy flight with u=1.5. Curves for different durations are divided RAP with Gaussian noise. Curves for different durations are divided
by the scaling factolT~, The upper curves are the average shapesby the scaling facto®2 The upper curves are the average shapes,
the lower ones are the standard deviations. the lower ones are the standard deviations.

est correlation time in the system, if the analysis is restrictegbossible to gives independent results. At the same time too
to a single realization. If the correlation time is infinite, as in small values ofe make the numerical simulation very time
the RAP, one should consider only fluctuations belonging ta&consuming.
independent realizations. In all simulationsT is integer; hence it is in principle
Another relevant issue for the application to real time se{possible to average only over trajectories that return after
ries concerns the amount of events required to obtain suffiexactly Tsteps. HowevelT cannot be decided priori but is
ciently clean results. In principle one should average ovethe outcome of the simulation; collecting a large number of
fluctuations of exactly the same duration, and rescale aftetrajectories for a single larg& may be a prohibitive task.
ward. This may turn out to require an exceedingly large numTherefore, similarly to what is done in experiments, we have
ber of events. An alternative procedure is to assume scalingerformed a binning procedure, by averaging over all runs
and average over fluctuations of different duration, properlythat return within a time interval betweeh—-AT and T
rescaled, with an exponent that can be obtained by plotting AT. Since the relative size of the bindZ/T decreases as
the size of fluctuations as a function of their duration. ThisT grows, we are sure that this procedure does not lead to
also checks whether scaling holds or not. significant perturbation of the results for large
For the case of Barkhausen noise, which was the initial Finally, when presenting numerical evaluations of the av-
inspiration of this work, we suspect that the asymmetricerage excursion we plofx(t))r normalized by the factor
shape observed in experiments must be due to the presensgT) =3 ds(x(sT)). This allows one to check the forii6)
of some kind of correlations. However, the kind of correla-in two ways. If scaling holds theN(T) grows as a power law
tions that we have analyzed give rightward asymmetriGthe exponent isx) and the different curves collapse on a
shapes, while the one observed experimentally are leftwargyniversal shapgwhich is f(s)].
This calls for further analysis, of more general processes.

APPENDIX A: DETAILS ABOUT APPENDIX B: NUMERICAL COMPUTATION

THE NUMERICAL RESULTS OF VARIANCE

When performing numerical simulations, we have taken For the simplest processes that can_be attacked analyti-
time to be discrete and space continuous, thus the concept 6flly we have already computed the variance:
first return to the initial value needs some clarification. We _ 2
have considered the process to return to the initial value o7 = (X~ ()T
when its value is in a small intervite, €] around it. In order  In the other cases it is possible to determine numerically
not to introduce an artificial asymmetry we have applied thesuch a quantity. In this appendix we show, as an example,
same condition to the first step of the excursion as well. Thighe results for two of such cases, i.e., the unbiased Levy
is implemented by letting the process starixatd for some  flight with ©=1.5 and the RAP. In Figs. 15 and 16 we have
negative time and taking as=1 the first time such that reported the average excursidx(t)); for different dura-
X(t)>e. The average is then performed over all trajectoriegions T divided by the expected scaling factdf. Corre-
that first return betweene-ande at a specified tim& under  spondingly we plot the values of the standard deviation
the constraint thak(t) > e for 1<t<T. Care has to be used o+(t) divided by the same factor. One sees thascales
when choosing the value @& which should be as small as exactly as the average shape in both cases.
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