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We compute the average shape of trajectories of some one-dimensional stochastic processesxstd in the st ,xd
plane during an excursion, i.e., between two successive returns to a reference value, finding that it obeys a
scaling form. For uncorrelated random walks the average shape is semicircular, independent from the single
increments distribution, as long as it is symmetric. Such universality extends to biased random walks and Levy
flights, with the exception of a particular class of biased Levy flights. Adding a linear damping term destroys
scaling and leads asymptotically to flat excursions. The introduction of short and long ranged noise correlations
induces nontrivial asymmetric shapes, which are studied numerically.
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I. INTRODUCTION

Many disordered systems respond to external solicitations
by producing noise with power-law features, that can be
modeled in terms of avalanches. A notable example of such
phenomena is the Barkhausen effect, first observed about a
century ago by recording the noise produced by the reversal
of large domains in a ferromagnet. The Barkhausen noise has
been incessantly investigated, both because of its practical
application as a nondestructive method to test magnetic ma-
terials, and because of its conceptual relevance for the under-
standing of the magnetization dynamics on a microscopic
scale[1]. Experiments show that both the size and the dura-
tion of avalanches of spin reversal are power law distributed
over several decades. The exponents characterizing these
power laws are often used to identify universality classes
[2,3]. Recently, the average pulse shape has been proposed as
a sharper tool for discriminating among universality classes
and to test models against experiments[4]. This analysis has
revealed some weaknesses of present models, since they all
fail to reproduce the avalanche shapes observed experimen-
tally. Namely, all models proposed so far produce symmetric
shapes, while leftward skewed forms are observed in experi-
ments, indicating that our understanding of the Barkhausen
effect is, at the present stage, incomplete. This open issue has
been the inspiration of this work.

We consider the problem of finding the average shape of a
generic stochastic signal during an excursion, i.e., between
two successive returns to a reference value. We hope that a
deeper understanding of how the statistical properties of the
signal are reflected on the shape of the average excursion can
in general give insight into the understanding of the process
generating the signal. In the case of Barkhausen noise, this
may help identifying which crucial ingredient is missing in
the theory, and lead to the introduction of more accurate
models.

Beyond its interest for what concerns the understanding of
Barkhausen noise, the nontrivial phenomenology of the ava-
lanche shape leads to more general and interesting questions:
What are the physical ingredients that determine the shape of
the average excursion in a generic stochastic process? Are
there universality classes? Does this shape encode pieces of
information about the underlying physical system, which are
not accessible by considering other observables? These is-
sues have not been addressed so far. In this paper we begin a
systematic investigation of the shape of the average excur-
sion, by considering some simple stochastic processes, both
uncorrelated and correlated, and with generically distributed
increments. In this way we provide a first theoretical frame-
work that may be of help in the analysis of real time series in
many contexts.

In Sec. II we introduce the concept of excursion, the types
of processes that we will consider in the following and the
general scaling form of the average excursion. Section III
presents the results for processes with uncorrelated incre-
ments (Brownian motion, random walk, Levy flights) and
Sec. IV discusses the effect of a damping term in a Brownian
motion. Sections V and VI consider, respectively, the effect
of long- and short-ranged noise correlations. Section VII pre-
sents some conclusions and an outlook. A short account of
some of the results presented here appeared in Ref.[5].

II. DEFINITION OF THE AVERAGE EXCURSION

Let us first define the average excursion of a stochastic
process. We consider a real valued 1d processxstd defined by
a Langevin equation with suitable initial conditions. An ex-
cursion of the process is the trajectory in thest ,xd plane,
followed until the first return to the initial valuexs0d [see
Fig. 1]. We are interested in the statistics of positive excur-
sions of a given durationT, i.e., those such thatxstd.xs0d
=0 for 0, t,T. In particular we will denote the average
excursion askxstdlT.

When analyzing real experimental data, one may need to
extend our definition to a generic reference value different
from zero. For example, this is the case for positive signals,
for which the identification of excursion(avalanches) is
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made unclear by the presence of background noise: one has
to choose a recipe to decide when an avalanche starts or
ends. In practice, one sets a threshold which is small enough
not to change the shape of the avalanche, but high enough
with respect to background noise.

A generic reference valuea is taken into account by a
translation of the origin oft andx: the excursion ofxstd with
respect toa is the excursion of a processx8st8d=xst8+ tad
−a with respect tox8s0d=0, wherexstad=a.

Notice that in general the probability distribution
of first return timesPsTd depends on the threshold valuea.
For this reason we expect that variations ofa will affect the
average excursionkxstdlT. In fact, for most of the simple
processes discussed below the choice ofa has no effect on
the shape of the average fluctuation.

We will analyze two kinds of processes. The first are pro-
cesses of the type

]txstd = jstd s1d

with random incrementsjstd extracted from a distribution
Qsjd. In Sec. III the noisej will be taken to be uncorrelated
while in Secs. V and VI we will deal with the effect of
correlations. The case considered in Sec. IV is the simplest
instance of a wide class of processes, Brownian motions in a
potential

]txstd = − dVsxd/dx+ jstd. s2d

For analytical calculations it is useful to express the average
excursion more explicitly. Let us first introduce the excur-
sion distributionVsx,t ux0,0 ;x0,Td, which is the probability
that a trajectory, started inx0 for t=0 and returning tox0 for
the first time at timeT, is in x at timet. For each timet, V is
the distribution of the quantity whose average iskxstdlT, i.e.,

kxstdlT =

E
0

`

dx xVsx,tux0,0;x0,Td

E
0

`

dxVsx,tux0,0;x0,Td
. s3d

Note thatVsx,t ux0,0 ;x0,Td is related to the distribution of
first return times of the process PsTd
;e0

` dxVsx,t ux0,0 ;x0,Td.
In the case of Markovian processes, as Eq.(2), V can be

written in terms of the functioncsx,t ux0,t0d, which is the
probability that the process started atx0 at time t0 is in x at
time t, with the condition thatx.0 for all t0, t8, t. The
probability Vsx,t ux0,0 ;x0,Td of the whole trajectory is the
product of the probabilitycsx,t ux0,0d of going from x0 to
xstd times the probabilitycsx0,Tux,td to go fromxstd back to
x0 at timeT. Notice that instead of starting exactly from 0 we
have to consider the path starting and arriving inx0→0 since
c vanishes identically forx0=0. Hence, for any Markovian
process, we can write

kxstdlT = lim
x0→0+

E
0

`

dx csx,tux0,0d x csx0,Tux,td

E
0

`

dx csx,tux0,0dcsx0,Tux,td
. s4d

Equations4d, together with translational invariance and the
scaling assumption

csx,tux0,0d = tbhfsx − x0d/tag s5d

for the conditional probabilitycsx,t ux0,0d implies

kxstdlT = Tafst/Td. s6d

In some of the cases that we will consider Eq.s4d cannot be
applied, since noise correlations break the Markovian prop-
erty. Nevertheless, we will always find Eq.s6d to be true
provided that the distributionPsTd of first return times de-
cays algebraically. In all the cases considered the exponenta
coincides with the wandering exponent of the unconstrained
process, defined bykfxstd−xs0dg2l. ta.

III. UNCORRELATED PROCESSES

A. Brownian motion

The simplest process is the uncorrelated Brownian motion

]txstd = jstd, s7d

where jstd is a Gaussian white noise withkjstdl=0 and
kjstdjst8dl=dst− t8d.

The probabilitycsx,t ux0,0d can be computed via the im-
age method[6] as a linear combination of two solutions of
the Fokker-Planck equation associated to the free process

csx,tux0,0d =
2

Î2pt
fe−sx − x0d2/s2td − e−sx + x0d2/s2tdg, s8d

yielding, in the limit of smallx0

FIG. 1. Schematic representation of the average shape of a fluc-
tuation. Thin solid lines are two realizations of the stochastic pro-
cessxstd, both returning for the first time at zero at timeT. The
thick solid line is the average shape computed over many
realizations.
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csx,tux0,0d =
2

Î2pt3/2
xx0e

−x2/s2td. s9d

The time-reversal and time-translational invariances of the
process implycsx0,Tux,td=csx,T− t ux0,0d, hence the distri-
bution V is

Vsx,tux0,0;x0,Td = csx,tux0,0dcsx,T − tux0,0d

~ fsT − tdtg−3/2sxx0d2e−x2h1/s2td+1/f2sT−tdgj.

s10d

Expression(9), inserted into Eq.(4), gives for the average
excursion

kxstdlT = T1/2Î 8

p
Î t

T
S1 −

t

T
D . s11d

The average excursion of Brownian motion is thus of the
scaling forms6d, with the exponenta=1/2 coinciding with
the wandering exponent of the free process and a scaling
function proportional to a semicircle

fU ssd =Î 8

p
Îss1 − sd, s12d

wheres= t /T. This result had already been noticed by Fisher
f7g. The variance of the excursion is also readily computed

Šfx − kxstdlTg2
‹T = TS3 −

8

p
D ss1 − sd. s13d

The previous results are easily generalized to the case of a
Brownian motion with bias, that is, Eq.(7) with v;kjl.0.
The process is now invariant under time reversal only pro-
vided the velocity is also reversed. Therefore, in this case
csx0,Tux,t ;vd=csx,T− t ux0,0 ;−vd. Such quantities can
again be computed via the image method[8]

csx,tux0,0;vd =
1

Î2pt
e−sx − x0 − vtd2/s2tds1 − e2xx0/td. s14d

Inserting this expression into the formula for the excursion
distribution it turns out thatV is the same of the unbiased
case except for an additional factore−v2T/2. Such a constant
appears both in the numerator and the denominator of Eq.s4d
implying that the average excursion is exactly the same of
the unbiased Brownian motions11d.

Notice that the addition of a bias introduces a character-
istic time of order 1/v2, which reflects in a cutoff in the
distribution of first return times[9]

PsTd ~ T−3/2e−v2T/2. s15d

However, a bias does not alter the shape of the excursion: the
number of trajectories that survive up to a timeT@2/v2 is
exponentially small, but the average shape of these unlikely
events is exactly the same as for the unbiased case.

This is the first example of the insensitivity ofkxstdlT with
respect to changes in the distribution of single steps, a fea-
ture that will turn out to be quite generic.

B. Random walk

The Brownian motion is a continuous process in space
and time. On the basis of the central limit theorem it is rea-
sonable to expect the form of the average excursion to be the
same for all processes with finite variance of the single in-
crements. To support this conjecture we now computekxstdlT

for a process with finite variance, discrete in space and time,
a random walk with bimodal distribution of the noise, i.e.,
Qsjd=sdj,1+dj,−1d /2. The number of paths starting in 0 at
time 0 and ending inx at time t without ever touching the
x=0 axis is given by[6]

Fsx,td =
x

t

t!

S t + x

2
D ! S t − x

2
D!

. s16d

Hence the probability to find the walker inx at time t with
the condition that it has never touched the axis is obtained
from Eq. s16d dividing Fsx,td by Mstd=ox Fsx,td, the total
number of possible trajectories oft steps in the positivex
half plane

csx,td =
Fsx,td
Mstd

. s17d

Using time-reversal symmetry, the average excursion is then
given by

kxstdlT =
ox

x csx,tdcsx,T − td

ox
csx,tdcsx,T − td

= Ko
x=0

t

x csx,tdcsx,T − td

s18d

with K=MstdMsT− td /Fs1,T−1d, where we used the fact
that ox Fsx,tdFsx,T− td is independent fromt and equal to
Fs1,T−1d. Introducing the variablesg=x/Ît, s= t /T, and
f=Îs/ s1−sd, and using the expansionn! / sn/2d !
.Î2/p 2n/n, we get MstdcsgÎt ,td=FsgÎt ,td
.s2t /Îptdge−g2/2, Fs1,T−1d.2T/Î2pT3/2, and K
.Î2/p(T−1/2/ss1−sd) so that the average excursion is

kxstdlT = KtfE
0

Ît

dgg3e−sg/2ds1+f2d .
2Kft

s1 + f2d2 , s19d

where in the last step the integral has been extended to in-
finity. Expressingf in terms ofs= t /T we recover

kxstdlT . T1/2Î 8

p
Îss1 − sd s20d

exactly as in the continuous case.
In the case of a biased walk, whereQsjd=fqdj,1+s1

−qddj,−1g, one must replace the number of trajectoriesFsx,td
with their probability: each trajectory reachingx at time t is
weighted by a factorqst+xd/2s1−qdst−xd/2. The trajectory lead-
ing back to zero has instead a weightqsT−t−xd/2s1−qdsT−t+xd/2.
The product of these weights gives simply a constant factor
fqs1−qdgT/2 both in the numerator and in the denominator of
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formula (18). Hence the introduction of a bias does not
change all moments of the distributionV of the excursion.

C. Unbiased Levy flights

Levy flights are statistical processes of the type(7), where
the distribution of single stepsQsjd has a fat tail decaying as
uju−m−1 with 0,m,2 so that their variance is infinite. The
standard form of the central limit theorem does not hold for
Levy flights: the invariant distributions under summation are
the Levy stable distributions[10]. It is therefore natural to
wonder whether Levy flights belong to a different universal-
ity class also with respect to the average excursion.

The analytical evaluation ofkxstdlT for this case is not
straightforward as for the processes discussed so far. While
Eq. (4) still holds, the image method cannot be used to de-
terminecsx,t ux0,0d, because the Fokker-Planck equation for
the free process is not local[11]. We have therefore com-
puted the average excursion numerically, considering steps
performed at discrete integer times with absolute value dis-
tributed according toQsujud~ suju+1d−m−1 and random sign.

Details about the evaluation ofkxstdlT in this and in the
other cases where numerical results have been obtained are
presented in Appendix A.

To check the validity of the scaling hypothesis we com-
pute the quantityNsTd, such thatkxstdlT=NsTdfst /Td, where
we choose, with no loss of generality to normalize the scal-
ing function f so thate0

1 fssdds=1. If scaling holds,NsTd has
to be proportional toTa and the normalized average shapes
kxstdlT/NsTd must collapse on the same curve for differentT.
In Fig. 2 we plotNsTd for several values ofm, showing that
a=max f1/2,1/mg. Also in this casea coincides with the
wandering exponent of the free process, which is 1/m for
m,2 and is the usual diffusive one whenmù2 [12].

Figure 3 reports the shape of the average excursion for
values ofm such that the second or even the first moment of
the single step distribution is infinite. In all cases the curves
for different values ofT collapse and the scaling form is

exactly the same as of the Brownian motion: The shape of
the average excursion is completely independent from the
distribution of single steps.

In Appendix B we report the results also for the variance
of Levy flights. We have not been able to prove this result
analytically for Levy flights. However, in the casem=1, we
have considered the Levy-stable distribution, the Cauchy dis-
tribution

Qsjd =
1

ps1 + j2d
. s21d

We have computed numerically the probability density
csx,td for such a process. The result is presented in Fig. 4,
where it is compared with the ansatz

csx,td =
a

t

Îx/t

1 + sx/td5/2, s22d

where a is a normalization constant. Formulas22d is the
simplest expression that interpolates between the smalls and

FIG. 2. The factorNsTd vs T for Levy flights with several values
of m. Notice that the exponent is 1/2 formù2.

FIG. 3. Scaling functionf for for Levy flights with several val-
ues ofm.

FIG. 4. Comparison betweencsx,td evaluated numerically for
for Levy flights with steps distributed according to Eq.(21) and the
ansatz(22).
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large s power-law behaviors found numerically. The agree-
ment between the numerical results and the formula is strik-
ing. A different ansatz has been checked to be false for such
a case, in Ref.f18g.

Inserting the expression(22) into Eq. (4) and performing
the integrals, one obtains

kxstdlT = TÎss1 − sd s23d

adding another piece of evidence to the universality offssd.

D. Biased Levy flights

We now consider the case of biased Levy flights, where
single increments are distributed symmetrically as in the un-
biased case plus a constant termv. In this case the average
form of the excursion is in general asymmetric for finite
times (toward left or right depending on the sign ofv). To
understand this behavior, it is fundamental to consider the
relative importance in the equation of motion of the drift
term and of the wandering due to the stochastic variablej.

The former is clearlyvT, while the latter grows asT1/m.
Hence a crossover timeT*svd,v−m/s1−md exists between two
regimes: which of the two mechanisms dominates depends
on the value ofm. For 1,m,2 the bias dominates for large
times, while the wandering is larger thanvT for T!T* . For
m,1 the opposite is true and asymptotically the bias does
not play any role.

When the bias is irrelevant, the behavior is the same as of
the unbiased case:kxstdlT is given by Eq.(12), a=1/m and
the first passage time distributionPsTd decays asT−1−1/m

[13].
When the bias dominates, instead, the shape of the excur-

sion is completely different. In this case the trajectories are
practically deterministic, i.e., ballistic motions with velocity
v. However, the noise term is crucial to have the constraint
xsTd=0 satisfied, since att.T a very large fluctuation is
needed. As a consequence, the distribution of return times is
PsTd,T−1−m, the exponenta is 1 and the average excursion
has a triangular shapefTssd=2s. This bias-dominated regime
is shown for m=1.5 andT@T* in Fig. 5. The crossover
between the two asymptotic regimes is very slow and it is
not possible to run a single simulation long enough to exhibit
the full transition between the early and late regimes. Nev-
ertheless it is possible to distinguish clearly between the be-
havior for m.1 andm,1. In the former case(Fig. 6) the
form of the average excursion becomes more and more
skewed with time, while in the latter case(Fig. 7) the oppo-
site behavior is observed.

To give a measure of the asymmetry, we consider the
quantity

E
0

1

dsfssdsgnss − 1/2d, s24d

which is zero for the semicircle and 1/2 for the triangle. The
insets of Figs. 6 and 7 clearly indicate that, form=1.5, it
grows, while it decreases to zero form=0.5, consistently
with the argument presented above.

Therefore, we can conclude that, while in the unbiased
case the average excursion of a generic uncorrelated stochas-
tic process with symmetric steps obeys asymptotically the
scaling form(6) with universal shapefUssd [Eq. (12)], in the
biased case, this is true only form,1 or mù2. For
1,m,2 instead, the presence of a bias leads to an
asymptotic average excursion with triangular shape. The re-
sults for biased flights are summarized in Fig. 8[14].

IV. DAMPED BROWNIAN MOTION

We now deal with a Brownian motion in a potential, Eq.
(2). We treat only the simplest possible case, an harmonic

FIG. 5. Bias-dominated regime for Levy-distributed increments
sm=1.5d with biasv=20. Main: Normalized scaling functionf con-
verging toward the asymptotic formfssd=2s. Upper inset: The fac-
tor NsTd growing asTa with a=1. Lower inset: First return distri-
bution PsTd decaying asT−m−1.

FIG. 6. Main: Scaling functionf for biased Levy flights with
m=1.5 andv=1. Inset: Temporal evolution of the asymmetry pa-
rameter[Eq. (24)].
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potentialVsxd=lx2, so that the Brownian motion is pushed
toward the origin by a linear damping term

]txstd = − lx + jstd. s25d

The formal solution of this equation is given by

xstd = x0e
−lt +E

0

t

dse−lst−sdhssd. s26d

Sincexstd is linearly related tohstd, it has a Gaussian distri-
bution characterized by its first and second moment, that can
be obtained by averaging over the noise:

mstd = kxstdl = x0e
−lt,

s27d

sl
2std = kfxstd − kxstdlg2l =

1 − e−2lt

2l
.

The normalized probability density for the free process is
therefore

Psx,td =
1

Î2pslstd
expF sx − x0e

−ltd2

2sl
2std G . s28d

One can easily check thatPsx,td solves the Fokker-Planck
equation

]tPsx,td = 1
2]x

2Psx,td − l]xfxPsx,tdg s29d

associated with the Langevin equations25d.
The distribution of first return times is

PsTd ~
1

8p

e2lT

s−l
3 sTd

=
1

8p
s2ld3/2 e−lT

s1 − e−2lTd3/2. s30d

Thus

PsTd ~ 5
8

p
T−3/2, T ! 1/l

8

p
s2ld3/2e−lT, T @ 1/l,

s31d

For T!1/l, theT−3/2 behavior characteristic of Brownian
motion is recovered. WhenT is of order 1/l, the power-law
behavior is cut off exponentially.

To calculate the average excursion we need to evaluate
the probabilitycsx,t ux0,0d that a walk originating atx0 at
time 0 is found inx at time t, without having ever touched
the origin. Since Eq.(25) is linear, the image method can be
applied, yielding

csx,tux0,0d =
1

Î2pslstd
HexpF−

sx − x0e
−ltd2

2sg
2std G

− expF−
sx + x0e

−ltd2

2sl
2std GJ . s32d

In the limit x0→0

csx,tux0,0d ~
2x0xe−lt

Î2psl
3std

e−fx2/2sl
2stdg s33d

The quantitycsx0,Tux,td for x0→0 is obtained in a simi-
lar way

csx0,Tux,td ~
2x0xe−lsT−td

Î2psl
3sT − td

e−fx2e−2lsT−td/2 sl
2sT−tdg. s34d

Defining s̃2
lstd=sl

2stde2lt one can rewrite Eq.s34d as

csx0,Tux,td ~
2x0xe2lsT−td

Î2ps̃3
lsT − td

e−fx2/2 s̃l
2sT−tdg. s35d

Note thats̃l
2std=sl

2stde2lt=s−l
2 std, thus the process with re-

versed time formally corresponds to the process with
l→−l.

FIG. 8. Sketch of the average shape for positively biased flights.
The crossover timeT* , depending on the value of the bias, changes
the asymptotic behavior only for 1,m,2. For m,1 the average
trajectory is asymmetric in the intermediate regimeT!T* , and it
takes a triangular shape in the limitT→` after T* →`.

FIG. 7. Main: Scaling functionf for biased Levy flights with
m=0.5 andv=25. Inset: Temporal evolution of the asymmetry pa-
rameter[Eq. (24)].
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The distribution of excursionsV is then

Vsx,tux0,0;x0,Td ~ e−lTfslstds−lsT − tdg−3e−x2/f2seq
2 st,Tdg,

s36d

where the variance of the Gaussian factor is

seq
2 = fsl

−2std + s−l
−2sT − tdg−1

=
1

2l
F s1 − e−2ltds1 − e−2lsT−tdd

1 − e−2lT G . s37d

Inserting Eqs.(33) and (34) into Eq. (4) yields

kxstdlT =Î 8

p
seqst,Td

=Î 8

p

1
Î2l

Îs1 − e−2ltds1 − e−2lsT−tdd
1 − e−2lT . s38d

As expected the existence of a characteristic time in the
problem(1/l) breaks down scaling; the shape of the average
excursion changes withT (Fig. 9). However formula(6) still
holds in the two asymptotic limits

kxstdlT =5Î
8

p
Î tsT − td

T
t,T − t ! 1/l

Î 8

p

1
Î2l

t,T − t @ 1/l.

s39d

Thus in the smalll limit the semicircle is recovered, while in
the largel limit the curve flattens around a value propor-
tional to 1/Îl, while keeping the semicircular tails. The
crossover between the two regimes corresponds to a
change in the varianceseq

2 of V

seq
2 =5

tsT − td
T

t,T − t ! 1/l

1

2l
t,T − t @ 1/l,

s40d

Thus fluctuations saturate at the value 1/s2ld, indicating the
absence of correlations on time scales longer than the char-
acteristic time 1/l.

In the computation presented here we have taken the ref-
erence value to coincide with the origin, i.e.,a=0. In the
presence of a potential, the effect of a reference value differ-
ent from zero corresponds to the changeVsxd→Vsx+ad. For
the damped Brownian motion, this is equivalent to the intro-
duction of a biasla. In general, such a bias perturbs the form
of the average excursion, at odds with the case of free ran-
dom walks, which are unchanged by the presence of a bias.
However, the change in the average shape is small provided
a is small compared with 4/Îpl, the maximal amplitude of
kxstdlT.

V. LONG-RANGED CORRELATIONS

We now start considering the effect of the introduction of
temporal correlations in the process. In particular, we study
processes of the form]txstd=jstd, with correlations between
single incrementsgst ,t8d;kjstdjst8dl−kjstdlkjst8dlÞdt,t8.

We first focus on a process]txstd=jstd where the noise
performs in its turn a Brownian motion]tjstd=hstd with
khl=0 and kh2l=1. Clearly this process is non-Markovian
and can be written as the random accelerated particle(RAP),

]t
2xstd = hstd. s41d

The correlation function ofjstd, gst ,t8d=minst ,t8d does not
decay to zero whent− t8 diverges: the noise has then infi-
nitely ranged correlations. This process has been studied
recently with regards to polymersf15g and the inelastic
collapse of granular matterf16g.

It is important to stress here that, at odds with the previ-
ous cases, the non-Markovian nature of the process implies
that to define completely a fluctuation one has also to con-
sider the initial and final velocities(the process is Markovian
if one considers the broader space of coordinate and veloc-
ity). We consider separately avalanches beginning with zero
or a finite velocity, that will yield different results. For what
concerns the final velocity the most natural thing is to aver-
age over all final velocities. The condition on the initial ve-
locity is numerically very easy to implement, since it corre-
sponds to settinghs0d=v0. Instead, the condition on the final
velocity is more delicate. Considering returns within a strip
s−e , +ed implies, when using discrete times, a hidden condi-
tion on the final velocities. This is apparent if one considers
the long time decay of the distribution of first return times. If
one considers discrete times and a return in a strip, the
known result PsTd,T−5/4 [17] is not recovered. The ex-
pected exponent is found instead if one averages over all
trajectories positive up tot,T and becoming negative for
t=T. Therefore, we considered only this latter kind of trajec-

FIG. 9. Average excursion for a damped random walk[Eq. (38)]
for 1/l=20. From top to bottom lines are forT
=10,25,50,100,250. Notice that the shape flattens to the constant
valueÎ4/spld (thin line).
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tories. We believe that, asymptotically, this coincides with
the continuous time process averaging over all final veloci-
ties.

Figure 10 reports the average excursion shape for two
different distributions ofh with finite variance, one uniform
and the other exponential, both in the case of zero initial
velocity. It is clear that scaling holds very well for all values
of T considered and for both distributions of the noise, and
that the scaling function is asymmetric. As shown in the
inset, the exponenta is again equal to the free wandering
exponent, which is 3/2. Remarkably, the scaling function is
indistinguishable from the simple form

fssd = 3
2s3/2s1 − sd. s42d

In Appendix B we report also the results for the variance
of the excursion, showing that it scales as the first moment.

When the initial velocity v0 is finite, instead, the
asymptotic scaling associated with an average shape(42) is
preceded by a transient regime with a more symmetric
kxstdlT, depending onT and v0 (Fig. 11). For largev0 the
shape is very close to a simple parabola 6ss1−sd. We have
also checked that the exponenta crosses over from a ballis-
tic value a=1 at short times to the asymptotic value 3/2.
Comparing the values ofa in the two regimes we expect the
crossover time to be proportional tov0

2.
We then consider RAP with noiseh distributed with

slowly decaying tailsPsuhud,h−1−m. With zero initial veloc-
ity the scaling function depends on the value ofm (Fig. 12),
at odds with what occurs for uncorrelated unbiased pro-
cesses. The skewness is toward right, the more so for small
valuesm. The exponenta is equal to1+1/m.

Despite the dependence of the detailed scaling form of
kxstdlT on the distribution of single steps, some degree of

universality remains also for the RAP process. The right
panel of Fig. 13 shows that the exponent characterizing the
behavior offssd for s→1 is universal, being linear also for
m=1. For small values ofs instead, a careful analysis indi-
cates that the actual exponent of the power-law behavior is
slightly different from the value 3/2 obtained for finite vari-
ance(Fig. 13, left panel). We do not have an explanation for
the value of this exponent. However, we cannot rule out that
such universality is restored for larger values ofT. We have
checked that, in the case of finite initial velocityv0, the tran-
sient parabolic shapes are present also for values ofm,2.

VI. SHORT-RANGED CORRELATIONS

We now turn to the case of short-ranged correlations. We
consider a process with correlations decaying exponentially
over an intervalt,

FIG. 10. Main: Average excursion for a RAP with zero initial
velocity, with uniform or exponential distribution of the noiseh,
showing perfect agreement with the simple form(42). Inset: Factor
NsTd and first-return time distributionPsTd for uniform noise
distribution.

FIG. 11. Main: Scaling functionf for a RAP with finite initial
velocity, with uniform distribution of the noiseh.

FIG. 12. Main: Scaling functionf for a RAP with noiseh dis-
tributed with slow decaying tailsPsuhud and several values ofm,
compared with the simple form(42). Inset: FactorNsTd and first-
return time distributionPsTd for the same values ofm.
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gst,t8d = exp s− ut − t8u/td. s43d

A process of this type can be obtained in practice by feeding
the random walk with noise obeying a damped random walk
of the form jst+1d=gjstd+sÎ1−g2dhstd with uncorrelated
h. The correlator ofjstd is easily shown to decay expo-
nentially, with a characteristic timet=−1/ ln g.

For such a process, we do not expect scaling(6) to hold
for all values ofT. We can anticipate instead two regimes
depending on the durationT of the trajectories considered.
For short timesT!t, noise is correlated during the whole
trajectory and the behavior must be the same of the case with
infinitely ranged correlations treated above. For long times
T@t, on the contrary, noise is correlated only for intervals
that are short compared to the total duration of the excursion.
Hence the process is equivalent to an uncorrelated process
with some effective distribution of the single increments.

Numerical results fully confirm this picture. In Fig. 14 we
show the case of a short-memory process with zero initial
velocity and finite variance noise. For short timesT!t the
shape is very close to the form(42), valid for RAP. A slow
crossover leads for longer times to the semicircle law valid
for uncorrelated processes. We have checked that the ex-
pected pattern of behavior occurs also for nonzero initial
velocity and for Levy-distributed noise.

VII. CONCLUSIONS

Let us summarize the results presented in the previous
sections. We have studied the statistics of excursions in some
classes of stochastic processes, with particular attention to
the average shape. For uncorrelated free processes we have
found that the average excursion has a scaling function pro-
portional to a semicircle, independent from the distribution
of the single steps provided it is symmetric. This holds not

only for distributions that renormalize to the Gaussian, but
also for the class of distributions that renormalize to symmet-
ric Levy stable distributions. More generally the scaling
function is unchanged when a bias is introduced, with the
notable exception of the case with 1,m,2, where the
asymptotic shape of fluctuations is triangular. The addition of
a linear damping term in the Langevin equation for the pro-
cess introduces a characteristic time scale, that separates be-
tween two regimes: for short times the process is dominated
by noise, and the excursion is the same as in the free case.
For longer times, scaling breaks down and the shape of the
average fluctuation flattens to a value independent from its
duration. Furthermore, we have analyzed the effect of noise
correlations for the free process. When correlations are long
ranged the shape of a fluctuation depends on the initial ve-
locity v0. For v0=0 we find that the scaling function has
asymmetric tailss3/2 and s1−sd in the Gaussian case, while
the situation for Levy distributed steps is less clear. For
v0.0 a transient regime exists such that the scaling function
has linear tails(independent from the distribution of the
single steps), before it crosses over to the asymptotic form
which is the same of thev0=0 case. Finally, in the case of
short-range correlated noise, the range of correlation sets a
time scale that separates between a short time regime, where,
as expected the behavior is similar to the long-range case,
followed by a crossover to the asymptotic uncorrelated be-
havior.

Application of this analysis to real data requires some
care. Indeed in many situations of practical interest one deals
with long time series consisting of a large number of succes-
sive fluctuations. In such a case, if one computeskxstdlT by
averaging over successive returns to the valuex=a one may
average over pulses that are not statistically independent.

In our work, on the contrary, we take care to average
always on independent events. When the process we con-
sider is Markovian this does not require particular prescrip-
tions. In this case averaging over successive fluctuations in a
single realization is equivalent to averaging over avalanches
belonging to different realizations. Otherwise one should
consider avalanches separated by times larger than the larg-

FIG. 13. Left top: Smallt /T tail of the scaling functionf for
RAP with Cauchy distribution of single steps. Left bottom: Local
effective exponent computed on the figure above. Right top: Small
1−t /T tail of the scaling functionf for RAP with Cauchy distribu-
tion of single steps. Right bottom: Local effective exponent com-
puted on the figure above.

FIG. 14. Normalized average shape for a short-memory process
with zero initial velocity, finite variance noise andt=1000. The
dashed lines are the expected limiting curves forT!t andT@t.
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est correlation time in the system, if the analysis is restricted
to a single realization. If the correlation time is infinite, as in
the RAP, one should consider only fluctuations belonging to
independent realizations.

Another relevant issue for the application to real time se-
ries concerns the amount of events required to obtain suffi-
ciently clean results. In principle one should average over
fluctuations of exactly the same duration, and rescale after-
ward. This may turn out to require an exceedingly large num-
ber of events. An alternative procedure is to assume scaling
and average over fluctuations of different duration, properly
rescaled, with an exponent that can be obtained by plotting
the size of fluctuations as a function of their duration. This
also checks whether scaling holds or not.

For the case of Barkhausen noise, which was the initial
inspiration of this work, we suspect that the asymmetric
shape observed in experiments must be due to the presence
of some kind of correlations. However, the kind of correla-
tions that we have analyzed give rightward asymmetric
shapes, while the one observed experimentally are leftward.
This calls for further analysis, of more general processes.

APPENDIX A: DETAILS ABOUT
THE NUMERICAL RESULTS

When performing numerical simulations, we have taken
time to be discrete and space continuous, thus the concept of
first return to the initial value needs some clarification. We
have considered the process to return to the initial value
when its value is in a small intervalf−e ,eg around it. In order
not to introduce an artificial asymmetry we have applied the
same condition to the first step of the excursion as well. This
is implemented by letting the process start atx=0 for some
negative time and taking ast=1 the first time such that
xstd.e. The average is then performed over all trajectories
that first return between −e ande at a specified timeT under
the constraint thatxstd.e for 1, t,T. Care has to be used
when choosing the value ofe, which should be as small as

possible to givee independent results. At the same time too
small values ofe make the numerical simulation very time
consuming.

In all simulationsT is integer; hence it is in principle
possible to average only over trajectories that return after
exactly Tsteps. However,T cannot be decideda priori but is
the outcome of the simulation; collecting a large number of
trajectories for a single largeT may be a prohibitive task.
Therefore, similarly to what is done in experiments, we have
performed a binning procedure, by averaging over all runs
that return within a time interval betweenT−DT and T
+DT. Since the relative size of the bins 2DT/T decreases as
T grows, we are sure that this procedure does not lead to
significant perturbation of the results for largeT.

Finally, when presenting numerical evaluations of the av-
erage excursion we plotkxstdlT normalized by the factor
NsTd=e0

1 dskxssTdlT. This allows one to check the form(6)
in two ways. If scaling holds thenNsTd grows as a power law
(the exponent isa) and the different curves collapse on a
universal shape[which is fssd].

APPENDIX B: NUMERICAL COMPUTATION
OF VARIANCE

For the simplest processes that can be attacked analyti-
cally we have already computed the variance:

sT
2std = Šfx − kxstdlTg2

‹T.

In the other cases it is possible to determine numerically
such a quantity. In this appendix we show, as an example,
the results for two of such cases, i.e., the unbiased Levy
flight with m=1.5 and the RAP. In Figs. 15 and 16 we have
reported the average excursionkxstdlT for different dura-
tions T divided by the expected scaling factorTa. Corre-
spondingly we plot the values of the standard deviation
sTstd divided by the same factor. One sees thats scales
exactly as the average shape in both cases.

FIG. 15. Plot of the average shape and standard deviation for
Levy flight with m=1.5. Curves for different durations are divided
by the scaling factorT1/m. The upper curves are the average shapes,
the lower ones are the standard deviations.

FIG. 16. Plot of the average shape and standard deviation for
RAP with Gaussian noise. Curves for different durations are divided
by the scaling factorT3/2. The upper curves are the average shapes,
the lower ones are the standard deviations.
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